Involution Hell

数学公式语法

求和、求积、二项式

样例指令
i=1n\sum_{i=1}^n\sum_{i=1}^n
i=1n\prod_{i=1}^n\prod_{i=1}^n
(ab)\tbinom{a}{b}\tbinom{a}{b}

矩阵、行列式

(abcd)\left(\begin{matrix} a & b \\ c & d \end{matrix}\right)
$$
\left(\begin{matrix}
a & b \\
c & d
\end{matrix}\right)
$$
abcd\left|\begin{matrix} a & b \\ c & d \end{matrix}\right|
$$
\left|\begin{matrix}
a & b \\
c & d
\end{matrix}\right|
$$
(12n23n+1n21nn+1n2)\left(\begin{matrix} 1 & 2 & \cdots & n \\ 2 & 3 & \cdots & n+1 \\ \vdots & \vdots & \ddots & n^2 - 1\\ n & n+1 & \cdots & n^2 \end{matrix}\right)
$$
\left(\begin{matrix}
1 & 2 & \cdots & n \\
2 & 3 & \cdots & n+1 \\
\vdots & \vdots & \ddots & n^2 - 1\\
n & n+1 & \cdots & n^2
\end{matrix}\right)
$$

维持等号缩进

f(Xθ)=f(x1,x2,,xnθ)=f(x1θ)f(x2θ)f(xnθ)=i=1n1xi!eθθxi=(i=1n1xi!)enθθi=1nxi\begin{aligned} f(X|\theta) &= f(x_1,x_2,\cdots,x_n|\theta)\\ &= f(x_1|\theta) \cdot f(x_2|\theta) \cdots f(x_n|\theta)\\ &= \prod_{i=1}^n \frac{1}{x_i !} e^{-\theta}\theta^{x_i}\\ &= \left(\prod_{i=1}^n \frac{1}{x_i !}\right) e^{-n \theta}\theta^{\sum_{i=1}^n x_i} \end{aligned}
$$
\begin{aligned}
    f(X|\theta) &= f(x_1,x_2,\cdots,x_n|\theta)\\
    &= f(x_1|\theta) \cdot f(x_2|\theta) \cdots f(x_n|\theta)\\
    &= \prod_{i=1}^n \frac{1}{x_i !} e^{-\theta}\theta^{x_i}\\
    &= \left(\prod_{i=1}^n \frac{1}{x_i !}\right) e^{-n \theta}\theta^{\sum_{i=1}^n x_i}
\end{aligned}
$$

分段函数的表示(与Latex有差异)

因为不能用\equation和各种\cases,所以需要变通一下

f(x,θ)={1x2πθe12θ[log(x)]2, x>00, otherwisef(x,\theta) = \left\{ \begin{array}{ll} \dfrac{1}{x\sqrt{2\pi \theta}} e^{-\frac{1}{2\theta} [\log(x)]^2} &,\text{ $x>0$} \\ 0 &,\text{ otherwise} \end{array} \right.
$$
f(x,\theta) = \left\{ \begin{array}{ll}
\dfrac{1}{x\sqrt{2\pi \theta}} e^{-\frac{1}{2\theta} [\log(x)]^2} &,\text{ $x>0$} \\
0 &,\text{ otherwise}
\end{array} \right.
$$

贡献者